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We consider longshore motion generated within the surf zone by obliquely incident 
breaking waves, and seek to describe the effect on such motion of variations, caused 
by wave grouping, in the incident longshore momentum flux. The effects of associated 
variations in set-up are not considered. 

We use the linear long-wave equations to describe the motion resulting from the 
longshore momentum contained in a wave group. This consists of a succession of edge 
waves which disperse along the beach, and, for the example considered, an eventual 
steady circulation cell at the position of the wave group. We suggest that such a cell 
is always likely to be formed if the wave group is sufficiently localized, and that 
higher-modenumber edge waves are more likely to be excited. 

We find timescales for the dispersal of the edge waves, and for the decay, due to 
bottom friction, of the circulation cell : we suggest that the latter may more generally 
be used, as a timescale for the effect of friction on longshore motion. 

1. Introduction 
Observations of wave height and surface elevation close to beaches often show 

consistent variations, both in time and along the beach. Munk (1949) suggested that 
long-period variations in amplitude, which he termed surf beat, are due to the linear 
superposition of two incident wavetrains of slightly differing frequencies. Bowen & 
Guza (1978) distinguish two effects: amplitude modulation (or grouping) of the 
incident waves, and the more complex phenomenon of surf beats. 

Recent work has concentrated upon the role of edge waves in causing such 
variation. Huntley (1976) observes that edge waves can indeed make a large 
contribution to low-frequency energy near a coastline. Gallagher (1971) shows that 
nonlinear interactions between different components of the incident-wave spectrum 
may generate long-period edge waves near a coastline, and the experiments of Bowen 
& Guza (1978) suggest that surf beat is indeed strongest when conditions for the 
resonant growth of edge waves are satisfied. Guza & Bowen (1975) show that a regular 
wavetrain may be unstable to longshore perturbations as it approaches a coastline, 
and that this can be a mechanism for the generation of edge waves. The preferred 
excited waves are low-modenumber edge waves which are a subharmonic of the 
incident waves. If the incident waves are normal to the beach, the excited waves are 
standing edge waves. The experiments of Guza & Chapman (1979) confirm these 
effects. Foda & Mei (1981) find that normally incident, slowly modulated swell waves 
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can themselves excite edge waves with longer periods than those found by Guza and 
Bowen. 

The effect on motion within the surf zone of longshore variations of normally 
incident waves is studied by Bowen (1969), who considers a small sinusoidal variation 
in wave height along the beach, with no time dependence. He finds that the steady 
water motion in the surf zone takes the form of a series of circulation cells along the 
beach, with flow seawards out of the surf zone near points where the wave height 
is least. The motion is due to longshore variations in set-up, caused by the variations 
in breaker height: this in turn leads to a longshore pressure gradient, from an area 
of high waves to one of low waves, which drives the longshore velocity. This presents 
a possible explanation for several observed features of motion on beaches, particularly 
those features with a definite and regular longshore spacing, such as circulation cells 
and the associated rip currents. The effect of temporal variations in breaking of 
normally incident waves has been considered by Symonds, Huntley & Bowen (1982), 
who show that surf beat can, by varying the breaker position, excite standing edge 
waves. They suggest that obliquely incident waves may similarly generate edge 
waves. 

When waves are obliquely incident, the effect of amplitude variations on surf zone 
motion is twofold, being due (a)  to variations in set-up, and ( b )  to variations in the 
flux of longshore momentum incident on the surf zone. The former exists regardless 
of obliqueness, while the latter is caused only by obliquely incident waves. In this 
paper we consider only the effect of ( b )  on longshore motion in the surf zone. The 
motion resulting from this should be seen as being an additional effect of wave 
grouping, caused only by obliquely incident waves, for which, nevertheless, the two 
effects (a )  and ( b )  must occur together. We shall, in considering only the latter, 
thereby ignore any interaction between the effects of variations in set-up and in 
longshore momentum flux. We shall use linearized dynamics, therefore also neglecting 
interaction between longshore motion and any changes in onshore motion and water 
depth. The results found here are, accordingly, a guide to the physical features likely 
in practice to be found, in addition to the circulation cells found by Bowen (1969). 
We consider, in $4, the circumstances in which the results we find may be observable. 

For simplicity, we shall consider only the effect of an individual group of obliquely 
incident waves. Since we are using linearized dynamics, the full effect of wave 
groupings would appear as a superposition, along the beach, of the results found 
below. For our purposes, since we are considering only the effect of the resulting 
changes in incident momentum flux, we may model the arrival of such a group as 
the sudden deposition within the surf zone ofa finite ‘packet’ of longshore momentum 
with some given spatial distribution. This represents the local increase in incident 
longshore momentum flux due to increased wave height: Longuet-Higgins (1970) 
shows how the wave-induced longshore stress, which drives longshore motion, is 
related to incident wave height. In order for the arrival of the longshore momentum 
correctly to be described as impulsive, the duration of the wave group and the time 
taken for the incident longshore momentum to spread shorewards must both be less 
than the timescales of changes in the subsequent motion, as discussed later. 

We shall consider, in §§2 and 3 respectively, the transient and the eventual steady 
motion caused by a given initial distribution of longshore momentum. We omit, in 
these sections, any representation of bottom friction. Foda & Mei (1981) find, in 
similar circumstances, that the inclusion of bottom friction affects time-dependent 
motion only quantitatively. However, the ‘steady’ motion discussed in $3 may be 
expected to decay, owing to friction, and in $4  we estimate a timescale for changes 
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in longshore motion when the incident longshore momentum flux (which is determined 
by the incident waves) is insufficient to match frictional dissipation (determined by 
motion within the surf zone). Since these are the circumstances following the arrival 
of a wave group, this gives a timescale for the decay of the motion described in $3. 
We also, in $4, consider the circumstances in which the timescale for the dispersal 
of the transient edge waves, described in $2, may be sufficiently long for them to be 
observable. 

2. Transient motion 
We suppose that, at some initial moment, a finite amount of longshore momentum 

is instantaneously deposited in the surf zone. We define it by specifying an initial 
distribution of longshore velocity, which may be rotational if we assume it to have 
been introduced by an obliquely incident group of waves. We use linear theory, so 
that we may neglect interactions with any other surf-zone motion, and in particular 
with changes in onshore momentum caused by the arrival of such a wave group. We 
also, for simplicity, neglect friction, but note that any long-lasting motion found as 
a solution may be expected to decay, because of friction, on a timescale determined 
by the incident waves; we discuss this further in $4. 

A full description of the linearized long-wave equations is given by Peregrine (1972), 
who notes that even in circumstances where they are not strictly applicable, as is the 
case here, they give a qualitative guide to what might happen; it is in this spirit that 
we adopt them here. They may be written 

where x and y are coordinates measured respectively seawards and along the beach ; 
x = 0 represents the shoreline; ho(x) is the undisturbed water depth for a beach with 
no longshore variations in topography; ~ ( x ,  y ,  t )  is the surface displacement, so that 
the total depth is 

h(x, y ,  t )  = hO(4 +T(", Y ,  t ) ,  

and u(x, y, t )  and w(x, y ,  t )  are respectively x- and y-components of depth-averaged 
water velocity. 

We seek solutions of (1) satisfying a given initial velocity distribution 

v(x, Y ,  0) = VO@, Y ) ,  N x ,  Y, 0) = 0 (2) 

u(0, y ,  t )  = 0, w(0, y ,  t )  bounded. (3) 

with boundary conditions 

This is similar to the initial-value problem studied by Whitham (1979), who finds 
solutions to the one-dimensional problem (w ES 0 in (1) )  for a given initial surface 
displacement. His solutions are a linear superposition of edge-wave modes ; we shall 
find solutions in a similar manner. 

We firstly combine (1) so as to eliminate 9 and u, to find 

" t t t - g h o ( ~ , , + ~ , , ) t - g h ~ ~ , ,  = 0. (4) 

An alternative procedure is to eliminate u and w, finding an equation only in 7, as 
by Whitham (1979). However, this does not so readily show the existence of the steady 
solutions, described below, for which 9 is identically zero. 
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One solution of (4) is clearly given by vt = 0: this leads to the time-independent 
solutions already mentioned. For the moment, we assume that vt + 0, and seek 
solutions of the form 

v(x, y, t )  = Re M x ,  y) exp (W) (w * 0). (5)  

We also take the beach to be plane and regular with slope s, so that 

h,(x) = sx. 

Using ( 5 )  in (4) and taking a Fourier transform in space, so that 

~. 

we find 

where a, prime denotes differentiation with respect to x. Whitham (1979) finds the 
solutions bounded at x = 0 and 00 as 

&,(z, I )  = e-IzIZL,(2111 x) (n = 0, i ,2 ,  . . ,), (8) 

where the L, are Laguerre polynomials 

for values of w given by 
w2 = sg(2n+ 1) Ill. 

The full solution of (7)  is therefore a superposition of the eigenfunctions (8): 

00 

&(x, I )  = ;I: An(,!) L,(21Z( x) e-lJlz, 
n-o 

(9) 

and so 

& ( I )  Ln(211) x) e-lzls-i(z~-ot) dl, (10) 

where the A,(Z) are chosen to satisfy the initial conditions (2): the appropriate 
inversion theorem as used by Whitham (1979) gives 

Equation (1 c) gives the surface displacement as 

~ ( x ,  y, t )  = -Re Z (12) 
w m a  1 

An(I) L,(211[ x)-e-~zlZ-i(2~-wt) dl, 
2 v  ,-L 1 

to which an arbitrary function of x and t may be added, allowing for the onshore- 
offshore motion. 

These solutions are superpositions of shallow-water edge-wave modes, which travel 
along the beach, with amplitude decreasing seawards. We have therefore described 
a mechanism for the excitation of edge waves, due to longshore variations in the 
amplitude of obliquely incident breaking waves. Which modenumbers actually occur 
depends upon particular circumstances. However, the edge waves described here are 
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excited by an input of longshore momentum into the surf zone, and longshore velocity 
normally increases with distance from the shore to a maximum at some distance 
offshore. Thus a particular modenumber is more likely to be excited in this way if 
its energy is not too concentrated near the shoreline. This suggests that higher- 
numbered modes are more favoured, since, for a given frequency, the amplitude of 
the edge wave of a particular modenumber decreases with distance from the shore 
less rapidly than does that of an edge wave of a lower modenumber. 

Since edge waves are dispersive, and, in the present problem, there is no driving 
for the motion after the initial disturbance, we may expect the amplitude of the edge- 
wave solutions found here to decrease with time as the waves disperse along the beach. 
In order to show this, we consider the behaviour of the solution (12)  for large values 
oft .  

Since we are considering a linearized problem, we may write the initial distribution 
as Pa2 rco 

and find the solution for the surface elevation as a superposition of Green functions, 
i.e. as 

~ ( x ,  Y, t )  = jm jm uo(xo, yo) G ( x ,  y, t ;  xo,  yo) dxodyo, 

vo(z, Y) = v, 4 x  - xo) S(Y - Yo). 

-a2 0 

where G(z, y ,  t ;  xo, yo) is the solution of the initial-value problem for which 

(14) 
For this initial distribution the A ,  are obtained from (11) as 

A,(E) = 2% Ln(2(Z( xo) 14 e-lllzo+ilYo, 

and we find the solution from (12)  as 

x {COS ( Z ( Y  - yo) - wt)  - cos ( I (  y - yo) + wt )} dl, ( 15) 

where a, = (sg(2n+ 1)).f, so that w = anlZli, from the edge-wave dispersion rela- 
tion (9). 

A stationary-phase asymptotic expansion of (15)  gives 

x exp [ -9 (x+ x,)] I," cos { [w2-2wow1- '-"]dw 
a; a: 

as t e a ,  where wo = ta2,/21y-yoI. Using Gradshteyn & Ryzhik (1965, tj(3.693)) to 
evaluate the integral, we obtain 

The amplitude of the nth mode is therefore 

as t+a. 
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If we take the surf-zone width to be a typical value for x + xo, this gives a timescale 
for the dispersion of a particular edge-wave mode a t  a point a distance y- yo from 
the original disturbance as 

2(Y-Yo) 7, = 
(ghB(2n+ l))" 

where hB is the depth a t  breaking. Thus, at any given point along the beach, the rate 
of dispersion increases with modenumber. Since the zero-modenumber component of 
the motion disperses most slowly, we define a timescale for the dispersion of the 
edge-wave motion as 

3. Steady motion 
In the original initial-value problem there is a distribution of vorticity in the surf 

zone. Since the linear shallow-water equations (1) conserve vertical vorticity, this 
distribution must remain even after the edge waves generated by the initial 
disturbance have dispersed. There must therefore, if linear theory is used, and bottom 
friction is neglected, be left in the surf zone a residual steady velocity distribution. 
Upon setting a/at = 0 in (1) to give a steady solution, we find that the only non-trivial 
equation is 

ho(u,+v,)+hiu = 0, 

where u and v are now functions of x and y which preserve the original vorticity 
distribution, so that 

0,-u =-- C(x,y) say, 

together with the conditions (3). We now seek a solution of (17) and (18) in terms 
of a mass-transport stream function $(x, y) defined by 

(18) 
avo - 

y ax 

$, = xu, $dry = -xu, (19) 

for a plane beach with ho = sx. Equation (19) satisfies (17) identically, and (18) 
becomes 

X W X X  + $,,) - $x = x2C(x, Y).  

Defining a Fourier transform by 

we find 

where we have changed the independent variable to z = Zx. The solutions to the 
homogeneous form of (21) are 

for arbitrary A(Z), B(1) ; a solution to the inhomogeneous equation is 

(Kamke 1948 §A (24.2)), where 1, and Kl are modified Bessel functions. 
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The full solution is the sum of (22) and (23). After satisfying the boundary 
conditions, we find this to be 

- $ ( x , l )  = -%I' , ( lx) l~~zKK'(Z)i(; , l )dz+K~(lx)  

= 5 ( K l ( l x )  l: zIo(z)  f i 0  (;, 1 )  dz - I l ( l x )  zKo(z )  Go (: , 1 )  de} , (24) 

after integrating by parts, and assuming zero longshore velocity at the shoreline. 

velocity distribution 

where we take 

We shall show, for illustration, an example of a solution with an initial longshore 

V o b  Y) = &f(4 d Y ) ,  (25) 

(26) 
X 

f ( x )  = -e-x/xo , 
XO 

g ( y )  = e-(Y/Yo)' 

for some constants xo, yo and V,. This form of f ( x )  gives a distribution of longshore 
current across the surf zone which is qualitatively similar to those often found in 
practice. 

The form of g ( y )  in (26) is chosen to give a distribution sharply peaked at y = 0, 
and close to zero far along the beach, as is appropriate in considering the effect of 
a localized wave group. The corresponding solution of (21) is 

by inverting the Fourier transform, we k d  the stream function to be 

@ @ , ! I )  = - ~ ~ { o m ~ [ I 1 ( Z x ) R K ( x ,  Z ) - K l ( l x ) R I ( x , l ) ]  cos(Zy)exp(-$y~Z2)dl, (27) 

where 
RK(x ,  E )  = - J m  z (1 - L) Kl(z) exp (3) dz, 

lx 1x0 lX0 

R I ( x ,  1 )  = lr z (1 -L) Il(z) exp (3) dz. 
l X 0  ZXO 

Standard numerical routines were used to evaluate all the integrals. The semi-inkite 
integral in (27) was calculated by truncation of the range at  a finite value Em,, beyond 
which the integrand is sufficiently small to be considered negligible : at I,,, = 20 its 
value was always less than machine tolerance, and this limit was used. 

In figure 1 we show contours of $ ( x , y )  calculated from (27) and of the vorticity 
[ ( x ,  y ) .  The values V, = 1, xo = yo = 1 were used. A circulation cell is seen, in the region 
near the maximum of the original distribution V,: shoreward of its centre, the 
direction of the longshore motion is reversed from that of the initial motion. On each 
side, along the beach, of the circulation cell, there is a current, flowing seaward on 
one side and shoreward on the other. The angle that this flow makes with the shoreline 
depends on the dimensions of the problem : if the longshore scale yo is much less than 
the offshore scale xo, which is a measure of the surf-zone width, this current flows 
almost directly seaward or shoreward close to the circulation cell. 

In  the calculation of particle velocities, the aspect ratio xo/yo is a free parameter. 
We show in figure 2 profiles of longshore velocity v ( x ,  y), for x o / y o  = 1 ,  in order to 
compare the original distribution vo(x ,  y) with the final steady distribution derived 
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FIGURE 1.  Streamlines and contours of vorticity for steady motion on a plane beach. The shoreline 
is at x = 0. -, $ = constant; --------, C = constant. 

from (27). Comparisons of these profiles are shown at various values of y, within the 
region of interest, i.e. within the circulation cell. There are significant changes in v 
within this region, of the order of the original magnitude of vo. 

Although we have found that the particular initial conditions of (25) and (26) 
eventually give rise to a circulation cell, details of the flow resulting from any given 
initial conditions are obscured by the complexity of (24). It would, however, be of 
particular interest to know under what conditions on the initial velocity a circulation 
cell might result. 

We suppose that the presence of a cell is indicated by a negative value of longshore 
velocity at the origin, x = 0 and y = 0, using (24) to find this value. By inverting the 
Fourier transform, and finding v(x, y) using (19), we obtain 

i rco r m  
v(0,O) = -- J, J Z2xKo(Zx) fio(x, 1 )  dldx. 

0 
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FIQURE 2. Longshore velocity versus distance from shoreline, at four stations along the beach, 
showing -, the initial longshore velocity v,(z,y), from (25) and (26), and ---------, the 
corresponding eventual steady longshore velocity, with a circulation cell present. 

A sufficient condition for v(0,O) < 0 is therefore that 

f l O ( X , Z )  2 0 v x  2 0,z 2 0. 
This indicates that, if vo(x, y) is sharply peaked near y = 0 for all values of 5, that is 
that the initial motion is concentrated near a single point on the beach, then a 
circulation cell will be formed. 

A succession of surf beats at intervals along a shore may be expected to produce 
a series of such circulation cells, with a pattern broadly similar to that found by Bowen 
(1969). The mechanisms for their generation are, however, different : those of Bowen 
are due to the variations in set-up associated with changes in breaker height, and 
may be caused by normally incident waves; those found here result from the 
longshore momentum associated with obliquely incident waves. 

4. Timescale 
Whether either the transition edge waves or the residual velocity distribution 

already described is in practice observed depends upon the timescale of their 
duration. The edge waves disperse with a timescale 7, given by (16), while the ‘steady ’ 
velocity distribution of 93 decays with time owing to bottom friction, whose effect 
has so far been neglected. We shall, however, make an estimate of the timescale of 
this decay. 
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A steady longshore current, when such exists, is a balance between the incident 

longshore momentum flux and friction, which depends on the current itself. Thus, 
if longshore motion is suddenly increased owing to the arrival of a wave group, the 
rate of dissipation due to friction is also increased. If, however, as we suppose here, 
the subsequent incident longshore momentum flux does not match the increased 
frictional dissipation, the effect of friction will be to decrease the overall longshore 
momentum until the abovementioned balance again exists. We seek a timescale for 
this process. 

Within the surf zone we again adopt the linearized shallow-water equations, with 
the inclusion of a term representing bottom friction : we use a quadratic friction law, 
under which the bottom friction stress is 

B = Cpulul, 

where u is local fluid velocity and C is a dimensionless constant. If we suppose that 
the longshore velocity is always much less than the onshore velocity, we may write 
the longshore momentum equation as 

A consideration of the first and last terms of (28) shows that a characteristic timescale 
for changes in longshore momentum due to bottom friction is the value of 

h 
7f = -, 

c u m  
where Urn = m. We thereforc usc rf as a timescale for the decay of the steady motion 
described in $3. 

Equation (28) may more formally be used (Ryrie 1981) to show that T~ is the 
timescale on which friction allows longshore motion to react to a change in the 
incident momentum flux. The same timescale is found by Foda & Mei (1981) for the 
rate of change, due to bottom friction, of energy in long waves in the surf zone. We 
suggest therefore that Tf, as defined by (29), may more generally be used as a timescale 
for the effect of friction acting on longshore motion. 

A further timescale in the problem is the period of changes in the amplitude of the 
incident waves, which may be due to modulations in the offshore wavetrain, or to 
edge waves: we use rS to denote this timescale. Of interest is the ratio re/?,, whose 
value indicates whether edge waves excited by the arrival of a wave group, as 
described in $2, are likely to be observable between successive wave groups. 

If wave groups are the result of modulations in the incident wavetrain, caused, 
perhaps, by interference between waves of slightly differing frequencies, then the 
longshore spacing of such groups is L = (c,/sin 0,) T,, since wave crests travel along 
the shore with speed cB/sinO,. If we take &L to be a typical value of y in (16), and 
CB Z (ghB)+ then we find 

-x- re 1 
7, sin$,’ 

Thus, if the angle of incidence is small, edge waves excited as in $2 disperse only 
slowly, but, on the other hand, their total energy is also small, and is zero if 8, is 
zero. Note, however, that in the analysis of $2 we consider the effect of a wave group 
arriving a t  only one point on a beach at a given time: this is no longer strictly 
appropriate when considering a wave group moving along the beach with the incident 
waves. 
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A wave group may also be due to edge waves generated, for instance, in the way 
described by Guza & Bowen (1975). In this case we may take L to be the wavelength 
of any such edge waves. If we also take xo to be the surf-zone width, so that h, = sxo, 
and again use y = &L in (l6), we find, after using the edge-wave dispersion relation, 

independently of edge-wave modenumber. Thus, if the longshore spacing L is at least 
as great as the surf-zone width, we may expect any edge waves that are excited as 
described in $2 to be observable, in between the occurrence of wave groups, and before 
they disperse. 

It is of interest to apply the above discussion to a practical example in order to 
find possible values of the timescales described. As part of the field observations 
described by Packwood (1980) on Putborough Sands in N. Devon, a record was made 
of the breaking position of waves arriving at  one point on the beach. This record was 
analysed for a period of 24 minutes. Since breaker height is often approximately 
proportional to depth at breaking and hence to distance from the shore, this provides 
a rough record of amplitude at breaking. The mean surf-zone width at  the time was 
about 70 m, the mean wave period was about 7 s, and the beach slope was almost 
constant a t  about 1 : 60. 

Packwood finds that the breaker amplitudes appear to lie in the range 0.3-2 m. 
Although their variation with time is not regular, there is evidence of irregular 
variations with a timescale in the range 30-50 s. If we take a value for this timescale 
as r, x 40 s, and use L x 42 m as the wavelength of an edge wave with this period, we 
find re/., x 0.3; the same value holds for all modenumbers. If the incident waves had 
been approaching at  an angle to the shoreline, we might expect, on the basis of this 
estimate for the particular wave record used, that edge waves excited as described 
in $2 may make an appreciable contribution to longshore motion. 

The timescale rf of frictional decay may be estimated by the averaging process 
used to obtain (8). We take hx 1 m as a typical depth in the surf zone: 
u, x ia(gh)i = 0.6 m/s, where a x 0.4 is the ratio of amplitude to depth, and C x 0.01 
as the friction coefficient. Equation (29) gives rp x 3 min, so that, in this particular 
case, friction acts only slowly compared to the wave period and the timescale of 
edge-wave dispersion. t 

5. Concluding remarks 
In  considering unsteady longshore motion, we have discussed both its response to 

fluctuations in the breaking waves and its transition from one steady state to another. 
The former problem remains of considerable interest. We have carried out only a 

simple treatment of the effects of fluctuations in the incident waves on longshore 
motion. However, we have been able to indicate some likely results. We have shown 
that grouping of an obliquely incident wavetrain may excite edge waves, and have 
suggested that high modenumbers may, in practice, be the most likely to be 
generated. We have also shown the possible occurrence of circulation cells caused by 
variations in incident longshore momentum flux. 

t The validity of this conclusion depends strongly on the value used of the friction coefficient 
6. A referee has observed that, in the presence of a wave boundary layer, C may be sufficiently 
large (C % 0.05) to make 7p, in this example, comparable to T,  in magnitude. 

10 F L M  137 
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We have also derived a timescale on which weak longshore motion changes from 
one steady periodic motion to another. The existence of such a timescale may be 
significant in practical applications of longshore current predictions, in which it is 
often implicitly assumed that an instantaneous balance is made between driving 
stress and friction. 

I am grateful to Dr D. H. Peregrine for many helpful discussions, and to referees 
for their comments. The financial assistance of the Science and Engineering Research 
Council is gratefully acknowledged. 
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